Early Access: Applied RF Engineering II


Exclusively on RF Mentor Academy Subscription!

Gain early access to lectures and labs for the Applied RF Engineering II - Signals and Propagation course as lectures and labs are published as part of your RF Mentor Academy Subscription! See our subscription blog posting for all the details.

This course is the second installment in our Applied RF Engineering Certification program.

The process of coding information onto an RF carrier is a key aspect that enables modern wireless transmission. An RF/wireless engineer needs to understand how information can be represented as changes to the properties of a carrier, as well as the impediments that the carrier faces going from the transmit antenna to the receive antenna. Although the topic is complex, many key concepts are remarkably simple to understand and help to demystify assumptions concerning frequency, range, and bandwidth requirements for example. Furthermore, understanding the basic modulation types serves as a foundation for understanding how today's elaborate commercial standards work, by seeing them as the combination of familiar building blocks alongside other more advanced techniques.

Lab exercises in the course using Octave/Matlab allow the student to explore relationships between time and frequency domains, as well as providing some bonus familiarity and competence with basic DSP algorithms. Some basic modulation signals are explored, and the basic principles of OFDM signal generation are demonstrated.

RF Mentor Academy Subscription Logo

Propagation and Antennas

 • fading • fading models • indoor attenuation factors • multipath • diversity • doppler • "the channel" • workbook
 • near/far fields • basis for 1/2 wavelength • effective area

Time and Frequency

Time/Frequency Relationships
 • rectangular pulse • sinc funciton • LAB: Explore rectangular pulse, spectrum, phase changes for timing
Signal Conditioning
 • truncated sinc spectrum • raised cosine filter • baseband filtering • LAB: Create pulse train, apply baseband filtering • sampling, sampling rate • A/D bits vs. dynamic range • Nyquist sampling rate • Shannon capacity


Analog Modulation
 • AM • FM • PM
Digital Modulation
 • Modulation types: ASK, PSK, QAM • phasor diagrams • I-Q axes • SNR requirement vs. number of bits/symbol • IQ modulator • LAB: create/plot basic digitally modulated waveforms

Impairments and Testing

 • vector signal analyzer (VSA) • span/sampling frequency relationship • resolution/record length
 • data displays: constellation, eye diagram, error table • impairment types: phase or amplitude based • IQ modulator impairments • LAB/DEMO: use VSA software to view imparments on recorded signals

Coding and Multiple Access

 • error detection • error correction • effect on SNR requirements
Multiple Access
 • FDMA • TDMA • MIMO • OFDMA • LAB: create rudimentary OFDM waveforms using IFFT
Average score: 0%
Progress: 0%